CNS*2020 Online has ended
Welcome to the Sched instance for CNS*2020 Online! Please read the instruction document on detailed information on CNS*2020.
Back To Schedule
Sunday, July 19 • 7:00pm - 8:00pm
P95: A functional role of short-term synapses in maintenance of gustatory working memory in orbitofrontal cortex

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Feedback form is now closed.
Layla Antaket, Yoshiki Kashimori

Taste perception is an important function for life activities, such as ingestion of nutrition and escape of toxic foods. Gustatory information is first processed by taste receptors in the taste buds present in the tongue. After that, it is transmitted to the orbitofrontal cortex (OFC), the hypothalamus, and the amygdala. In the course of a series of information processing processes, GC processes information on the quality and strength (concentration) of taste itself. Currently, taste research is proceeding with electrophysiological and molecular biological research on receptors. However, the processing mechanism of taste information encoded in each part of the taste transmission pathway is not well understood.

Furthermore, in addition to the higher-order processing of taste information, the OFC, located above the GC, integrates taste information and other sensory information such as tactile sensation, smell, and color to determine the flavor (flavor) of food and guide behavior. We proposed a binding mechanism of taste and odor information in the OFC [1].A recent study has shown an alternative function of OFC, or working memory function of taste information [2]. The study showed that OFC neurons of the rhesus monkeys encoded a gustatory working memory in a delayed match-to-sample task. OFC neurons exhibited a persistent activity even when a gustatory stimulus presented in the sample period was turned off, whereas neurons of the primary gustatory cortex (GC) did not show a significant persistency of the activity. It is unclear how the gustatory working memory in the OFC is shaped by the interaction between the GC and the OFC.

To address this issue, we focus on a delayed match-to-sample task, in which monkeys have to decide whether the first juice stimulus is the same as the second stimulus separated by a delay period. We develop a model of gustatory system that consists of network models of GC and OFC. Each model of GC and OFC has two-dimensional array of neurons, which encode information of three kinds of foods, orange, guava, and tomato. These network models were based on the Izhikevich neuron model[3] and biophysical synapses mediated by neurotransmitters such as AMPA, NMDA, and GABA. The neural unit consists of a main neuron and an inhibitory interneuron, mutually connected with AMPA and GABA synapses. Main neurons are reciprocally connected with AMPA and NMDA synapses. The NMDA-synaptic connections between these networks are formed by Hebbian learning in a task-relevant way. The gustatory information of three foods is represented by dynamical attractors in the GC and OFC networks. Simulating our model for match/nonmatch trails, we explored the neural mechanism by which the working memory of gustatory information is generated in the OFC. We show that the working memory of gustatory information is shaped by the recurrent activation mediated by short-term synapses of OFC neurons. In addition, we examined how working memory formed by the OFC is used for match/nonmatch decision-making by adding a decision layer to the model.


1. Shimemura T, Fujita K, Kashimori Y. A neural mechanism of taste perception modulated by odor information. Chemical Senses _. _2016 _, _41(7), 579-589. 2. Lara AH, Kennerley SW, Wallis JD. Encoding of Gustatory Working Memory by Orbitofrontal Neurons. J Neurosci. 2009, 29(3), 765-774. 3. Izhikevich EM. Simple Model of Spiking Neurons. IEEE Trans Neural Net. _2003,_ 14(6) 1569-1572.


Layla Antaket

University of Electro-Communications

Sunday July 19, 2020 7:00pm - 8:00pm CEST
Slot 15