Loading…
CNS*2020 Online has ended
Welcome to the Sched instance for CNS*2020 Online! Please read the instruction document on detailed information on CNS*2020.
Back To Schedule
Sunday, July 19 • 7:00pm - 8:00pm
P39: Simulating cell to cell interactions during the cerebellar development

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Feedback form is now closed.
Join Zoom Meeting:
https://oist.zoom.us/j/98913735621?pwd=SnRDcS9QZzVCTWZFQlpodGtyMG8yZz09
Password: 856877

If you have further comments and questions about my poster, please contact me: mizuki.kato[at]oist.jp

Mizuki Kato
, Erik De Schutter

The cerebellum is involved in both motor and non-motor functions in the brain. Any deficit during its development has been suggested to trigger ataxia as well as various psychiatric disorders.

During the development of both human and mouse cerebella, precursors of one of the main excitatory neurons, granule cells, first accumulate in the external granule layer on the surface and subsequently migrate down to the bottom of cerebellar cortex. In addition to the massive soma migration, these granule cell precursors also descend their axons through the migratory paths which further branch into parallel fibers, making the environment even more crowded. Although palisade-like Bergmann glia physically guide granule cells during the migration, mechanisms about how these two cell types interact to manage the migration through such a shambolic environment are still unclear.

Rodent cerebella have been widely used as subjects in experimental studies, and have provided great pictures of granule cells and Bergmann glia. However, technical limitations still hinder the observation of cerebellar development both as populations and in a continuous manner. Building a computational model by a reverse-engineering process which integrates available biological observations will be essential to point out differences in the developmental dynamics between normal and abnormal cerebellum.

Most computational models for simulating neuronal development have focused on intracellular factors of single cell types. Although models simulating limited environmental factors exist, models for cell-cell interactions during neuronal development are rare. Alternatively, we used new computational framework, NeuroDevSim, to simulate populations of granule cells and Bergmann glia during cerebellar development.

NeuroDevSim evolved from NeuroMaC [1] and so far is the only active software that can simultaneously simulate developmental dynamics of different types of neurons at population-scale.

The goal structure of simulation with NeuroDevSim comprises 3,000 granule cells and 200 Bergmann glia in a 1x10^6 µm^3 regular cube, calculated by assuming a cube of mice cerebellar cortex. 26 Purkinje cell somas are also introduced as interfering spherical objects. Their dendritic development will be included in the future. At current stage of the simulation, reduced systems are used, aiming to direct the traffic of granule cell somas and to navigate their axonal growth.

The resulted model will enable visualization of massive migration dynamics of cerebellar granule cells with growing parallel fibers and of their phenomenological interactions with Bergmann glia. This model will provide new insight to understand developmental dynamics of cerebellar cortex.

Reference

1\. Torben-Nielsen, B. and E. De Schutter (2014). "Context-aware modeling of neuronal morphologies." Front Neuroanat 8 : 92.

Speakers
MK

Mizuki Kato

PhD Student, Computational Neuroscience Unit, Okinawa Institute of Science and Technology



Sunday July 19, 2020 7:00pm - 8:00pm CEST
Slot 04